Chebyshev-Type Quadrature on Multidimensional Domains

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost - Interpolatory Chebyshev Quadrature

The requirement that a Chebyshev quadrature formula have distinct real nodes is not always compatible with the requirement that the degree of precision of an npoint formula be at least equal to n. This condition may be expressed as | \d\ \p = 0, 1 g p, where d (dx, ■ ■ ■ , d„) with Mo(w) ~ , -IT dj = 2w A iM ; = 1, 2, • • ■ , z!, ZJ ,_, Pj(io), j = 0, 1, • • • , are the moments of the weight fu...

متن کامل

On computing rational Gauss-Chebyshev quadrature formulas

We provide an algorithm to compute the nodes and weights for Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary real poles outside [−1, 1]. Contrary to existing rational quadrature formulas, the computational effort is very low, even for extremely high degrees, and under certain conditions on the poles it can be shown that the complexity is of...

متن کامل

Selected topics on quadrature domains ?

This is a selection of facts, old and new, about quadrature domains. The text, written in the form of a survey, is addressed to non-experts and covers a variety of phenomena related to quadrature domains. Such as: the difference between quadrature domains for subharmonic, harmonic and respectively complex analytic functions, geometric properties of the boundary, instability in the reverse Hele-...

متن کامل

On Chebyshev-Type Quadratures

According to a result of S. N. Bernstein, «-point Chebyshev quadrature formulas, with all nodes real, do not exist when n = 8 or n ä 10. Modifications of such quadrature formulas have recently been suggested by R. E. Barnhill, J. E. Dennis, Jr. and G. M. Nielson, and by D. Kahaner. We establish here certain empirical observations made by these authors, notably the presence of multiple nodes. We...

متن کامل

Topology of Quadrature Domains

Formulas like (0.1) and (0.2) are called quadrature identities, and the corresponding domains of integration are called (classical) quadrature domains. Various classes of quadrature domains have been known for quite some time, see e.g. Neumann’s papers [39, 40] from the beginning of the last century, but the systematic study began only with the work of Davis [13], and Aharonov and Shapiro [2]. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1994

ISSN: 0021-9045

DOI: 10.1006/jath.1994.1119